重构: 将 LogCleanupService 转为 Quartz Job 服务
All checks were successful
Docker Build & Deploy / Build Docker Image (push) Successful in 22s
Docker Build & Deploy / Deploy to Production (push) Successful in 7s
Docker Build & Deploy / Cleanup Dangling Images (push) Successful in 1s
Docker Build & Deploy / WeChat Notification (push) Successful in 1s

- 创建 LogCleanupJob 替代 LogCleanupService (BackgroundService)
- 在 Expand.cs 中注册 LogCleanupJob (每天凌晨2点执行, 保留30天日志)
- 从 Program.cs 移除 LogCleanupService 的 HostedService 注册
- 删除 Service/LogCleanupService.cs
- 删除 Service/PeriodicBillBackgroundService.cs (已无用的重复服务)

所有后台任务现在统一通过 Quartz.NET 管理, 支持运行时控制
This commit is contained in:
SunCheng
2026-01-28 11:19:23 +08:00
parent b71eadd4f9
commit 3ed9cf5ebd
26 changed files with 133 additions and 183 deletions

273
Service/AI/OpenAiService.cs Normal file
View File

@@ -0,0 +1,273 @@
using System.Net.Http.Headers;
namespace Service.AI;
public interface IOpenAiService
{
Task<string?> ChatAsync(string systemPrompt, string userPrompt);
Task<string?> ChatAsync(string prompt);
IAsyncEnumerable<string> ChatStreamAsync(string systemPrompt, string userPrompt);
IAsyncEnumerable<string> ChatStreamAsync(string prompt);
}
public class OpenAiService(
IOptions<AiSettings> aiSettings,
ILogger<OpenAiService> logger
) : IOpenAiService
{
public async Task<string?> ChatAsync(string systemPrompt, string userPrompt)
{
var cfg = aiSettings.Value;
if (string.IsNullOrWhiteSpace(cfg.Endpoint) ||
string.IsNullOrWhiteSpace(cfg.Key) ||
string.IsNullOrWhiteSpace(cfg.Model))
{
logger.LogWarning("未配置 OpenAI/DeepSeek 接口,无法调用 AI");
return null;
}
using var http = new HttpClient();
http.Timeout = TimeSpan.FromSeconds(15);
http.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", cfg.Key);
var payload = new
{
model = cfg.Model,
temperature = 0,
messages = new object[]
{
new { role = "system", content = systemPrompt },
new { role = "user", content = userPrompt }
}
};
var url = cfg.Endpoint.TrimEnd('/') + "/chat/completions";
var json = JsonSerializer.Serialize(payload);
using var content = new StringContent(json, Encoding.UTF8, "application/json");
try
{
using var resp = await http.PostAsync(url, content);
if (!resp.IsSuccessStatusCode)
{
var err = await resp.Content.ReadAsStringAsync();
throw new InvalidOperationException($"AI接口调用失败: {(int)resp.StatusCode} {resp.ReasonPhrase}, {err}");
}
var respText = await resp.Content.ReadAsStringAsync();
using var doc = JsonDocument.Parse(respText);
var root = doc.RootElement;
var contentText = root.GetProperty("choices")[0]
.GetProperty("message")
.GetProperty("content")
.GetString();
return contentText;
}
catch (Exception ex)
{
logger.LogError(ex, "AI 调用失败");
throw;
}
}
public async Task<string?> ChatAsync(string prompt)
{
var cfg = aiSettings.Value;
if (string.IsNullOrWhiteSpace(cfg.Endpoint) ||
string.IsNullOrWhiteSpace(cfg.Key) ||
string.IsNullOrWhiteSpace(cfg.Model))
{
logger.LogWarning("未配置 OpenAI/DeepSeek 接口,无法调用 AI");
return null;
}
using var http = new HttpClient();
http.Timeout = TimeSpan.FromSeconds(60 * 5);
http.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", cfg.Key);
var payload = new
{
model = cfg.Model,
temperature = 0,
messages = new object[]
{
new { role = "user", content = prompt }
}
};
var url = cfg.Endpoint.TrimEnd('/') + "/chat/completions";
var json = JsonSerializer.Serialize(payload);
using var content = new StringContent(json, Encoding.UTF8, "application/json");
try
{
using var resp = await http.PostAsync(url, content);
if (!resp.IsSuccessStatusCode)
{
var err = await resp.Content.ReadAsStringAsync();
throw new InvalidOperationException($"AI接口调用失败: {(int)resp.StatusCode} {resp.ReasonPhrase}, {err}");
}
var respText = await resp.Content.ReadAsStringAsync();
using var doc = JsonDocument.Parse(respText);
var root = doc.RootElement;
var contentText = root.GetProperty("choices")[0]
.GetProperty("message")
.GetProperty("content")
.GetString();
return contentText;
}
catch (Exception ex)
{
logger.LogError(ex, "AI 调用失败");
throw;
}
}
public async IAsyncEnumerable<string> ChatStreamAsync(string prompt)
{
var cfg = aiSettings.Value;
if (string.IsNullOrWhiteSpace(cfg.Endpoint) ||
string.IsNullOrWhiteSpace(cfg.Key) ||
string.IsNullOrWhiteSpace(cfg.Model))
{
logger.LogWarning("未配置 OpenAI/DeepSeek 接口,无法调用 AI");
yield break;
}
using var http = new HttpClient();
http.Timeout = TimeSpan.FromMinutes(5);
http.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", cfg.Key);
var payload = new
{
model = cfg.Model,
temperature = 0,
stream = true,
messages = new object[]
{
new { role = "user", content = prompt }
}
};
var url = cfg.Endpoint.TrimEnd('/') + "/chat/completions";
var json = JsonSerializer.Serialize(payload);
using var content = new StringContent(json, Encoding.UTF8, "application/json");
using var request = new HttpRequestMessage(HttpMethod.Post, url);
request.Content = content;
using var resp = await http.SendAsync(request, HttpCompletionOption.ResponseHeadersRead);
if (!resp.IsSuccessStatusCode)
{
var err = await resp.Content.ReadAsStringAsync();
throw new InvalidOperationException($"AI接口调用失败: {(int)resp.StatusCode} {resp.ReasonPhrase}, {err}");
}
using var stream = await resp.Content.ReadAsStreamAsync();
using var reader = new StreamReader(stream);
string? line;
while ((line = await reader.ReadLineAsync()) != null)
{
if (string.IsNullOrWhiteSpace(line) || !line.StartsWith("data: "))
continue;
var data = line.Substring(6).Trim();
if (data == "[DONE]")
break;
using var doc = JsonDocument.Parse(data);
var root = doc.RootElement;
if (root.TryGetProperty("choices", out var choices) && choices.GetArrayLength() > 0)
{
var delta = choices[0].GetProperty("delta");
if (delta.TryGetProperty("content", out var contentProp))
{
var contentText = contentProp.GetString();
if (!string.IsNullOrEmpty(contentText))
{
yield return contentText;
}
}
}
}
}
public async IAsyncEnumerable<string> ChatStreamAsync(string systemPrompt, string userPrompt)
{
var cfg = aiSettings.Value;
if (string.IsNullOrWhiteSpace(cfg.Endpoint) ||
string.IsNullOrWhiteSpace(cfg.Key) ||
string.IsNullOrWhiteSpace(cfg.Model))
{
logger.LogWarning("未配置 OpenAI/DeepSeek 接口,无法调用 AI");
yield break;
}
using var http = new HttpClient();
http.Timeout = TimeSpan.FromMinutes(5);
http.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", cfg.Key);
var payload = new
{
model = cfg.Model,
temperature = 0,
stream = true,
messages = new object[]
{
new { role = "system", content = systemPrompt },
new { role = "user", content = userPrompt }
}
};
var url = cfg.Endpoint.TrimEnd('/') + "/chat/completions";
var json = JsonSerializer.Serialize(payload);
using var content = new StringContent(json, Encoding.UTF8, "application/json");
// 使用 SendAsync 来支持 HttpCompletionOption
using var request = new HttpRequestMessage(HttpMethod.Post, url);
request.Content = content;
using var resp = await http.SendAsync(request, HttpCompletionOption.ResponseHeadersRead);
if (!resp.IsSuccessStatusCode)
{
var err = await resp.Content.ReadAsStringAsync();
throw new InvalidOperationException($"AI接口调用失败: {(int)resp.StatusCode} {resp.ReasonPhrase}, {err}");
}
using var stream = await resp.Content.ReadAsStreamAsync();
using var reader = new StreamReader(stream);
string? line;
while ((line = await reader.ReadLineAsync()) != null)
{
if (string.IsNullOrWhiteSpace(line) || !line.StartsWith("data: "))
continue;
var data = line.Substring(6).Trim();
if (data == "[DONE]")
break;
// 解析JSON时不使用try-catch因为在async iterator中不能使用
using var doc = JsonDocument.Parse(data);
var root = doc.RootElement;
if (root.TryGetProperty("choices", out var choices) && choices.GetArrayLength() > 0)
{
var delta = choices[0].GetProperty("delta");
if (delta.TryGetProperty("content", out var contentProp))
{
var contentText = contentProp.GetString();
if (!string.IsNullOrEmpty(contentText))
{
yield return contentText;
}
}
}
}
}
}

View File

@@ -0,0 +1,558 @@
using Service.Transaction;
namespace Service.AI;
public interface ISmartHandleService
{
Task SmartClassifyAsync(long[] transactionIds, Action<(string type, string data)> chunkAction);
Task AnalyzeBillAsync(string userInput, Action<string> chunkAction);
Task<TransactionParseResult?> ParseOneLineBillAsync(string text);
}
public class SmartHandleService(
ITransactionRecordRepository transactionRepository,
ITransactionStatisticsService transactionStatisticsService,
ITextSegmentService textSegmentService,
ILogger<SmartHandleService> logger,
ITransactionCategoryRepository categoryRepository,
IOpenAiService openAiService,
IConfigService configService
) : ISmartHandleService
{
public async Task SmartClassifyAsync(long[] transactionIds, Action<(string, string)> chunkAction)
{
try
{
// 获取指定ID的账单作为样本
var sampleRecords = await transactionRepository.GetByIdsAsync(transactionIds);
sampleRecords = sampleRecords
.Where(x => string.IsNullOrEmpty(x.Classify))
.ToArray();
if (sampleRecords.Length == 0)
{
// await WriteEventAsync("error", "找不到指定的账单");
chunkAction(("error", "找不到指定的账单"));
return;
}
// 重新按Reason分组所有待分类账单
var groupedRecords = sampleRecords
.GroupBy(r => r.Reason)
.Select(g => new
{
Reason = g.Key,
Ids = g.Select(r => r.Id).ToList(),
Count = g.Count(),
TotalAmount = g.Sum(r => r.Amount),
SampleType = g.First().Type
})
.OrderByDescending(g => Math.Abs(g.TotalAmount))
.ToList();
// 【增强功能】对每个分组的摘要进行分词,查询已分类的相似账单
var referenceRecords = new Dictionary<string, List<TransactionRecord>>();
foreach (var group in groupedRecords)
{
// 使用专业分词库提取关键词
var keywords = textSegmentService.ExtractKeywords(group.Reason);
if (keywords.Count > 0)
{
// 查询包含这些关键词且已分类的账单(带相关度评分)
// minMatchRate=0.4 表示至少匹配40%的关键词才被认为是相似的
var similarClassifiedWithScore = await transactionStatisticsService.GetClassifiedByKeywordsWithScoreAsync(keywords, minMatchRate: 0.4, limit: 10);
if (similarClassifiedWithScore.Count > 0)
{
// 只取前5个最相关的
var topSimilar = similarClassifiedWithScore.Take(5).Select(x => x.record).ToList();
referenceRecords[group.Reason] = topSimilar;
// 记录调试信息
logger.LogDebug("摘要 '{Reason}' 提取关键词: {Keywords}, 找到 {Count} 个相似账单,相关度分数: {Scores}",
group.Reason,
string.Join(", ", keywords),
similarClassifiedWithScore.Count,
string.Join(", ", similarClassifiedWithScore.Select(x => $"{x.record.Reason}({x.relevanceScore:F2})")));
}
else
{
logger.LogDebug("摘要 '{Reason}' 提取关键词: {Keywords}, 未找到高相关度的相似账单",
group.Reason,
string.Join(", ", keywords));
}
}
}
// 构建分类信息
var categoryInfo = await GetCategoryInfoAsync();
// 构建账单分组信息
var billsInfo = new StringBuilder();
foreach (var (group, index) in groupedRecords.Select((g, i) => (g, i)))
{
billsInfo.AppendLine($"{index + 1}. 摘要={group.Reason}, 当前类型={GetTypeName(group.SampleType)}, 当前分类={(string.IsNullOrEmpty(group.SampleType.ToString()) ? "" : group.SampleType.ToString())}, 涉及金额={group.TotalAmount}");
// 如果有相似的已分类账单,添加参考信息
if (referenceRecords.TryGetValue(group.Reason, out var references))
{
billsInfo.AppendLine(" 【参考】相似且已分类的账单:");
foreach (var refer in references.Take(3)) // 最多显示3个参考
{
billsInfo.AppendLine($" - 摘要={refer.Reason}, 分类={refer.Classify}, 类型={GetTypeName(refer.Type)}, 金额={refer.Amount}");
}
}
}
var systemPrompt = $$"""
你是一个专业的账单分类助手。请根据提供的账单分组信息和分类列表,为每个分组选择最合适的分类。
可用的分类列表:
{{categoryInfo}}
分类规则:
1. 根据账单的摘要和涉及金额,选择最匹配的分类
2. 如果提供了【参考】信息,优先参考相似账单的分类,这些是历史上已分类的相似账单
3. 如果无法确定分类,可以选择""
4.
- 使 NDJSON JSON
- JSON格式严格为
{
"reason": "交易摘要",
"type": Number, // 交易类型0=支出1=收入2=不计入收支
"classify": "分类名称"
}
-
- JSON对象
JSON对象NDJSON
""";
var userPrompt = $$"""
请为以下账单分组进行分类:
{{billsInfo}}
请逐个输出分类结果。
""";
// 流式调用AI
chunkAction(("start", $"开始分类,共 {sampleRecords.Length} 条账单"));
var classifyResults = new List<(string Reason, string Classify, TransactionType Type)>();
var sentIds = new HashSet<long>();
// 将流解析逻辑提取为本地函数以减少嵌套
void HandleResult(GroupClassifyResult? result)
{
if (result is null || string.IsNullOrEmpty(result.Reason)) return;
classifyResults.Add((result.Reason, result.Classify ?? string.Empty, result.Type));
var group = groupedRecords.FirstOrDefault(g => g.Reason == result.Reason);
if (group == null) return;
foreach (var id in group.Ids)
{
if (!sentIds.Add(id))
{
continue;
}
var resultJson = JsonSerializer.Serialize(new
{
id,
result.Classify,
result.Type
});
chunkAction(("data", resultJson));
}
}
// 解析缓冲区中的所有完整 JSON 对象或数组
void FlushBuffer(StringBuilder buffer)
{
var buf = buffer.ToString();
if (string.IsNullOrWhiteSpace(buf)) return;
// 优先尝试解析完整数组
var trimmed = buf.TrimStart();
if (trimmed.Length > 0 && trimmed[0] == '[')
{
var lastArrEnd = buf.LastIndexOf(']');
if (lastArrEnd > -1)
{
var arrJson = buf.Substring(0, lastArrEnd + 1);
try
{
var results = JsonSerializer.Deserialize<GroupClassifyResult[]>(arrJson);
if (results != null)
{
foreach (var r in results) HandleResult(r);
}
buffer.Remove(0, lastArrEnd + 1);
buf = buffer.ToString();
}
catch (Exception exArr)
{
logger.LogDebug(exArr, "按数组解析AI返回失败回退到逐对象解析。预览: {Preview}", arrJson.Length > 200 ? arrJson.Substring(0, 200) + "..." : arrJson);
}
}
}
// 逐对象解析
var startIdx = 0;
while (startIdx < buf.Length)
{
var openBrace = buf.IndexOf('{', startIdx);
if (openBrace == -1) break;
var closeBrace = FindMatchingBrace(buf, openBrace);
if (closeBrace == -1) break;
var jsonStr = buf.Substring(openBrace, closeBrace - openBrace + 1);
try
{
var result = JsonSerializer.Deserialize<GroupClassifyResult>(jsonStr);
HandleResult(result);
}
catch (Exception ex)
{
logger.LogWarning(ex, "解析AI分类结果失败: {JsonStr}", jsonStr.Length > 200 ? jsonStr.Substring(0, 200) + "..." : jsonStr);
}
startIdx = closeBrace + 1;
}
if (startIdx > 0)
{
buffer.Remove(0, startIdx);
}
}
var buffer = new StringBuilder();
await foreach (var chunk in openAiService.ChatStreamAsync(systemPrompt, userPrompt))
{
buffer.Append(chunk);
FlushBuffer(buffer);
}
// 如果AI流结束但没有任何分类结果发出错误提示
if (classifyResults.Count == 0)
{
logger.LogWarning("AI未返回任何分类结果buffer最终内容: {BufferPreview}", buffer.ToString().Length > 500 ? buffer.ToString().Substring(0, 500) + "..." : buffer.ToString());
chunkAction(("error", "智能分类未返回任何结果,请重试或手动分类"));
}
else
{
chunkAction(("end", "分类完成"));
}
}
catch (Exception ex)
{
logger.LogError(ex, "智能分类失败");
chunkAction(("error", $"智能分类失败: {ex.Message}"));
}
}
public async Task AnalyzeBillAsync(string userInput, Action<string> chunkAction)
{
try
{
// 构建分类信息
var categoryInfo = await GetCategoryInfoAsync();
// 第一步使用AI生成聚合SQL查询
var now = DateTime.Now;
var sqlPrompt = $$"""
当前日期:{{now:yyyy年M月d日}}{{now:yyyy-MM-dd}}
用户问题:{{userInput}}
数据库类型SQLite
数据库表名TransactionRecord
字段说明:
- Id: bigint 主键
- Card: nvarchar 卡号
- Reason: nvarchar 交易原因/摘要
- Amount: decimal 交易金额(支出为负数,收入为正数)
- OccurredAt: datetime 交易发生时间TEXT类型格式'2025-12-26 10:30:00'
- Type: int 交易类型0=支出, 1=收入, 2=不计入收支)
- Classify: nvarchar 交易分类(如:交通、餐饮、购物等)
【核心原则】直接生成用户所需的聚合统计SQL而不是查询原始记录后再统计
要求:
1. 根据用户问题判断需要什么维度的聚合数据
2. 使用 GROUP BY 按分类、时间等维度分组
3. 使用聚合函数SUM(ABS(Amount)) 计算金额总和、COUNT(*) 计数、AVG()平均、MAX()最大、MIN()最小
4. 时间范围使用 OccurredAt 字段,"X个月/"基于当前日期计算
5. Type = 0 Type = 1
6. TotalAmount, TransactionCount, AvgAmount
7. 使 ORDER BY
8. SQL语句
SQLite日期函数
- strftime('%Y', OccurredAt)
- strftime('%m', OccurredAt)
- strftime('%Y-%m-%d', OccurredAt)
- 使 YEAR()MONTH()DAY() SQLite不支持
SQL会被一下DOTNET代码执行,
```C#
public async Task<List<dynamic>> ExecuteDynamicSqlAsync(string completeSql)
{
var dt = await FreeSql.Ado.ExecuteDataTableAsync(completeSql);
var result = new List<dynamic>();
foreach (System.Data.DataRow row in dt.Rows)
{
var expando = new System.Dynamic.ExpandoObject() as IDictionary<string, object>;
foreach (System.Data.DataColumn column in dt.Columns)
{
expando[column.ColumnName] = row[column];
}
result.Add(expando);
}
return result;
}
```
{{categoryInfo}}
SQL语句
""";
var sqlText = await openAiService.ChatAsync(sqlPrompt);
// 清理SQL文本
sqlText = sqlText?.Trim() ?? "";
sqlText = sqlText.TrimStart('`').TrimEnd('`');
if (sqlText.StartsWith("sql", StringComparison.OrdinalIgnoreCase))
{
sqlText = sqlText.Substring(3).Trim();
}
logger.LogInformation("AI生成的SQL: {Sql}", sqlText);
chunkAction(
JsonSerializer.Serialize(new
{
content = $"""
<pre style="max-height: 80px; font-size: 8px; overflow-y: auto; padding: 8px; border: 1px solid #3c3c3c">
{WebUtility.HtmlEncode(sqlText)}
</pre>
"""
})
);
// 第二步执行动态SQL查询
List<dynamic> queryResults;
try
{
queryResults = await transactionRepository.ExecuteDynamicSqlAsync(sqlText);
}
catch (Exception ex)
{
logger.LogError(ex, "执行AI生成的SQL失败: {Sql}", sqlText);
// 如果SQL执行失败返回错误
var errorData = JsonSerializer.Serialize(new { content = "<div class='error-message'>SQL执行失败请重新描述您的问题</div>" });
chunkAction(errorData);
return;
}
// 第三步将查询结果序列化为JSON直接传递给AI生成分析报告
var dataJson = JsonSerializer.Serialize(queryResults, new JsonSerializerOptions
{
WriteIndented = true,
Encoder = JavaScriptEncoder.UnsafeRelaxedJsonEscaping
});
var userPromptExtra = await configService.GetConfigByKeyAsync<string>("BillAnalysisPrompt");
var dataPrompt = $"""
当前日期:{DateTime.Now:yyyy年M月d日}
用户问题:{userInput}
【用户要求(重要)】
{userInput}
查询结果数据JSON格式
{dataJson}
说明:以上数据是根据用户问题查询出的聚合统计结果,请基于这些数据生成分析报告。
请生成一份专业的数据分析报告,严格遵守以下要求:
【格式要求】
1. 使用HTML格式移动端H5页面风格
2. 生成清晰的报告标题(基于用户问题)
3. 使用表格展示统计数据table > thead/tbody > tr > th/td
4. 使用合适的HTML标签h2标题、h3小节、p段落、table表格、ul/li列表、strong强调
5. 支出金额用 <span class='expense-value'>金额</span> 包裹
6. 收入金额用 <span class='income-value'>金额</span> 包裹
7. 重要结论用 <span class='highlight'>内容</span> 高亮
【样式限制(重要)】
8. 不要包含 html、body、head 标签
9. 不要使用任何 style 属性或 <style> 标签
10. 不要设置 background、background-color、color 等样式属性
11. 不要使用 div 包裹大段内容
【内容要求】
12. 准确解读数据将JSON数据转换为易读的表格和文字说明
13. 提供洞察分析:根据数据给出有价值的发现和趋势分析
14. 给出实用建议:基于数据提供合理的财务建议
15. 语言专业、清晰、简洁
【用户补充(重要)】
{userPromptExtra}
直接输出纯净的HTML内容不要markdown代码块标记。
""";
// 第四步流式输出AI分析结果
await foreach (var chunk in openAiService.ChatStreamAsync(dataPrompt))
{
var sseData = JsonSerializer.Serialize(new { content = chunk });
chunkAction(sseData);
}
// 发送完成标记
chunkAction("[DONE]");
}
catch (Exception ex)
{
logger.LogError(ex, "智能分析账单失败");
var errorData = JsonSerializer.Serialize(new { content = $"<div class='error-message'>分析失败:{ex.Message}</div>" });
chunkAction(errorData);
}
}
public async Task<TransactionParseResult?> ParseOneLineBillAsync(string text)
{
// 获取所有分类
var categories = await categoryRepository.GetAllAsync();
// 构建分类信息
var categoryInfo = new StringBuilder();
foreach (var type in new[] { 0, 1, 2 })
{
var typeName = GetTypeName((TransactionType)type);
categoryInfo.AppendLine($"{typeName}: ");
var categoriesOfType = categories.Where(c => (int)c.Type == type).ToList();
foreach (var category in categoriesOfType)
{
categoryInfo.AppendLine($"- {category.Name}");
}
}
var sysPrompt = $$"""
你是一个智能账单解析助手。请从用户提供的文本中提取交易信息,包括日期、金额、摘要、类型和分类。
可用的分类列表:
{{categoryInfo}}
请返回 JSON 格式,包含以下字段:
- OccurredAt: 日期时间,格式 yyyy-MM-dd HH:mm:ss。当前系统时间为{{DateTime.Now:yyyy-MM-dd HH:mm:ss}}。
- Amount: 金额,数字。
- Reason: 备注/摘要,原文或其他补充信息。
- Type: 交易类型0=支出1=收入2=不计入收支。根据语义判断。
- Classify: 分类,请从以下现有分类中选择最匹配的一个:如果无法匹配,请留空。
返回示例
{
"OccurredAt": "2024-06-15 14:30:00",
"Amount": 150.75,
"Reason": "午餐消费",
"Type": 0,
"Classify": "餐饮"
}
JSON markdown
""";
var json = await openAiService.ChatAsync(sysPrompt, text);
if (string.IsNullOrWhiteSpace(json)) return null;
try
{
// 清理可能的 markdown 标记
json = json.Replace("```json", "").Replace("```", "").Trim();
var options = new JsonSerializerOptions { PropertyNameCaseInsensitive = true };
return JsonSerializer.Deserialize<TransactionParseResult>(json, options);
}
catch (Exception ex)
{
logger.LogError(ex, "解析账单失败");
return null;
}
}
/// <summary>
/// 查找匹配的右括号
/// </summary>
private static int FindMatchingBrace(string str, int startPos)
{
int braceCount = 0;
for (int i = startPos; i < str.Length; i++)
{
if (str[i] == '{') braceCount++;
else if (str[i] == '}')
{
braceCount--;
if (braceCount == 0) return i;
}
}
return -1;
}
private static string GetTypeName(TransactionType type)
{
return type switch
{
TransactionType.Expense => "支出",
TransactionType.Income => "收入",
TransactionType.None => "不计入收支",
_ => "未知"
};
}
private async Task<string> GetCategoryInfoAsync()
{
// 获取所有分类
var categories = await categoryRepository.GetAllAsync();
// 构建分类信息
var categoryInfo = new StringBuilder();
foreach (var type in new[] { 0, 1, 2 })
{
var typeName = GetTypeName((TransactionType)type);
categoryInfo.AppendLine($"{typeName}: ");
var categoriesOfType = categories.Where(c => (int)c.Type == type).ToList();
foreach (var category in categoriesOfType)
{
categoryInfo.AppendLine($"- {category.Name}");
}
}
return categoryInfo.ToString();
}
}
/// <summary>
/// 分组分类结果DTO用于AI返回结果解析
/// </summary>
public record GroupClassifyResult
{
[JsonPropertyName("reason")]
public string Reason { get; init; } = string.Empty;
[JsonPropertyName("classify")]
public string? Classify { get; init; }
[JsonPropertyName("type")]
public TransactionType Type { get; init; }
}
public record TransactionParseResult(string OccurredAt, string Classify, decimal Amount, string Reason, TransactionType Type);

View File

@@ -0,0 +1,151 @@
using JiebaNet.Analyser;
using JiebaNet.Segmenter;
namespace Service.AI;
/// <summary>
/// 文本分词服务接口
/// </summary>
public interface ITextSegmentService
{
/// <summary>
/// 从文本中提取关键词
/// </summary>
/// <param name="text">待分析的文本</param>
/// <param name="topN">返回前N个关键词默认5个</param>
/// <returns>关键词列表</returns>
List<string> ExtractKeywords(string text, int topN = 5);
/// <summary>
/// 对文本进行分词
/// </summary>
/// <param name="text">待分词的文本</param>
/// <returns>分词结果列表</returns>
List<string> Segment(string text);
}
/// <summary>
/// 基于 JiebaNet 的文本分词服务实现
/// </summary>
public class TextSegmentService : ITextSegmentService
{
private readonly JiebaSegmenter _segmenter;
private readonly TfidfExtractor _extractor;
private readonly ILogger<TextSegmentService> _logger;
public TextSegmentService(ILogger<TextSegmentService> logger)
{
_logger = logger;
_segmenter = new JiebaSegmenter();
_extractor = new TfidfExtractor();
// 仅添加JiebaNet词典中可能缺失的特定业务词汇
AddCustomWords();
}
/// <summary>
/// 添加自定义词典 - 仅添加JiebaNet词典中可能缺失的特定词汇
/// </summary>
private void AddCustomWords()
{
try
{
// 只添加可能缺失的特定业务词汇
// 大部分常用词(如"美团"、"支付宝"等JiebaNet已内置
var customWords = new[]
{
"水电费", "物业费", "燃气费" // 复合词,确保作为整体识别 // TODO 做成配置文件 让 AI定期提取复合词汇填入到这边
};
foreach (var word in customWords)
{
_segmenter.AddWord(word);
}
if (customWords.Length > 0)
{
_logger.LogDebug("已加载 {Count} 个自定义词汇", customWords.Length);
}
}
catch (Exception ex)
{
_logger.LogWarning(ex, "添加自定义词典失败");
}
}
public List<string> ExtractKeywords(string text, int topN = 5)
{
if (string.IsNullOrWhiteSpace(text))
{
return [];
}
try
{
// 使用 TF-IDF 算法提取关键词(已内置停用词过滤)
var keywords = _extractor.ExtractTags(text, topN, new List<string>());
// 过滤单字,保留有意义的词
var filteredKeywords = keywords
.Where(k => k.Length >= 2)
.Distinct()
.ToList();
// 如果过滤后没有关键词,使用基础分词并选择最长的词
if (filteredKeywords.Count == 0)
{
var segments = Segment(text);
filteredKeywords = segments
.Where(s => s.Length >= 2)
.OrderByDescending(s => s.Length)
.Take(topN)
.Distinct()
.ToList();
}
// 如果还是没有返回原文的前10个字符
if (filteredKeywords.Count == 0 && text.Length > 0)
{
filteredKeywords.Add(text.Length > 10 ? text.Substring(0, 10) : text);
}
_logger.LogDebug("从文本 '{Text}' 中提取关键词: {Keywords}",
text, string.Join(", ", filteredKeywords));
return filteredKeywords;
}
catch (Exception ex)
{
_logger.LogError(ex, "提取关键词失败,文本: {Text}", text);
// 降级处理:返回原文
return [text.Length > 10 ? text.Substring(0, 10) : text];
}
}
public List<string> Segment(string text)
{
if (string.IsNullOrWhiteSpace(text))
{
return [];
}
try
{
// 执行分词
var segments = _segmenter.Cut(text).ToList();
// 过滤空白和停用词
var filteredSegments = segments
.Where(s => !string.IsNullOrWhiteSpace(s) && s.Trim().Length > 0)
.Select(s => s.Trim())
.ToList();
return filteredSegments;
}
catch (Exception ex)
{
_logger.LogError(ex, "分词失败,文本: {Text}", text);
return [text];
}
}
}