代码优化
This commit is contained in:
@@ -21,7 +21,8 @@ public class EmailHandleService(
|
||||
IEmailMessageRepository emailRepo,
|
||||
ITransactionRecordRepository trxRepo,
|
||||
IEnumerable<IEmailParseServices> emailParsers,
|
||||
IMessageRecordService messageRecordService
|
||||
IMessageRecordService messageRecordService,
|
||||
ISmartHandleService smartHandleService
|
||||
) : IEmailHandleService
|
||||
{
|
||||
public async Task<bool> HandleEmailAsync(
|
||||
@@ -79,11 +80,12 @@ public class EmailHandleService(
|
||||
// 目前已经
|
||||
|
||||
bool allSuccess = true;
|
||||
var records = new List<TransactionRecord>();
|
||||
foreach (var (card, reason, amount, balance, type, occurredAt) in parsed)
|
||||
{
|
||||
logger.LogInformation("处理交易记录: 卡号 {Card}, 交易原因 {Reason}, 金额 {Amount}, 余额 {Balance}, 类型 {Type}", card, reason, amount, balance, type);
|
||||
|
||||
var success = await SaveTransactionRecordAsync(
|
||||
var record = await SaveTransactionRecordAsync(
|
||||
card,
|
||||
reason,
|
||||
amount,
|
||||
@@ -93,12 +95,17 @@ public class EmailHandleService(
|
||||
emailMessage.Id
|
||||
);
|
||||
|
||||
if (!success)
|
||||
if (record == null)
|
||||
{
|
||||
allSuccess = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
records.Add(record);
|
||||
}
|
||||
|
||||
_ = await AnalyzeClassifyAsync(records.ToArray());
|
||||
|
||||
return allSuccess;
|
||||
}
|
||||
|
||||
@@ -141,11 +148,12 @@ public class EmailHandleService(
|
||||
logger.LogInformation("成功解析邮件,共 {Count} 条交易记录", parsed.Length);
|
||||
|
||||
bool allSuccess = true;
|
||||
var records = new List<TransactionRecord>();
|
||||
foreach (var (card, reason, amount, balance, type, occurredAt) in parsed)
|
||||
{
|
||||
logger.LogInformation("刷新交易记录: 卡号 {Card}, 交易原因 {Reason}, 金额 {Amount}, 余额 {Balance}, 类型 {Type}", card, reason, amount, balance, type);
|
||||
|
||||
var success = await SaveTransactionRecordAsync(
|
||||
var record = await SaveTransactionRecordAsync(
|
||||
card,
|
||||
reason,
|
||||
amount,
|
||||
@@ -155,12 +163,17 @@ public class EmailHandleService(
|
||||
emailMessage.Id
|
||||
);
|
||||
|
||||
if (!success)
|
||||
if (record == null)
|
||||
{
|
||||
allSuccess = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
records.Add(record);
|
||||
}
|
||||
|
||||
_ = await AnalyzeClassifyAsync(records.ToArray());
|
||||
|
||||
return allSuccess;
|
||||
}
|
||||
|
||||
@@ -221,7 +234,7 @@ public class EmailHandleService(
|
||||
}
|
||||
}
|
||||
|
||||
private async Task<bool> SaveTransactionRecordAsync(
|
||||
private async Task<TransactionRecord?> SaveTransactionRecordAsync(
|
||||
string card,
|
||||
string reason,
|
||||
decimal amount,
|
||||
@@ -251,9 +264,10 @@ public class EmailHandleService(
|
||||
else
|
||||
{
|
||||
logger.LogWarning("交易记录更新失败,卡号 {Card}, 金额 {Amount}", card, amount);
|
||||
return null;
|
||||
}
|
||||
|
||||
return updated;
|
||||
return existing;
|
||||
}
|
||||
|
||||
var trx = new TransactionRecord
|
||||
@@ -276,9 +290,10 @@ public class EmailHandleService(
|
||||
else
|
||||
{
|
||||
logger.LogWarning("交易记录落库失败,卡号 {Card}, 金额 {Amount}", card, amount);
|
||||
return null;
|
||||
}
|
||||
|
||||
return inserted;
|
||||
return trx;
|
||||
}
|
||||
|
||||
private async Task<(string card, string reason, decimal amount, decimal balance, TransactionType type, DateTime? occurredAt)[]?> ParseEmailBodyAsync(string from, string subject, string body)
|
||||
@@ -293,4 +308,59 @@ public class EmailHandleService(
|
||||
|
||||
return await service.ParseAsync(body);
|
||||
}
|
||||
|
||||
private async Task<TransactionRecord[]> AnalyzeClassifyAsync(TransactionRecord[] records)
|
||||
{
|
||||
var result = new List<TransactionRecord>();
|
||||
await smartHandleService.SmartClassifyAsync(records.Select(r => r.Id).ToArray(), chunk =>
|
||||
{
|
||||
// 处理分类结果
|
||||
var (type, data) = chunk;
|
||||
|
||||
if (type != "data")
|
||||
{
|
||||
logger.LogWarning("未知的分类结果类型: {Type}, {Data}. 跳过分类", type, data);
|
||||
return;
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
var item = JsonSerializer.Deserialize<JsonObject>(data);
|
||||
|
||||
var recordId = item?["id"]?.GetValue<long>();
|
||||
var classify = item?["Classify"]?.GetValue<string>();
|
||||
var recordType = item?["Type"]?.GetValue<int>();
|
||||
|
||||
if (recordId == null || string.IsNullOrEmpty(classify) || recordType == null)
|
||||
{
|
||||
logger.LogWarning("AI分类结果数据不完整,跳过分类: {Data}", data);
|
||||
return;
|
||||
}
|
||||
|
||||
if (recordType < (int)TransactionType.Expense || recordType > (int)TransactionType.None)
|
||||
{
|
||||
logger.LogWarning("AI分类结果交易类型无效,跳过分类: {Data}", data);
|
||||
return;
|
||||
}
|
||||
|
||||
var record = records.FirstOrDefault(r => r.Id == recordId);
|
||||
if (record == null)
|
||||
{
|
||||
logger.LogWarning("未找到对应的交易记录(AI返回内容有误),跳过分类,ID: {Id}", recordId);
|
||||
return;
|
||||
}
|
||||
|
||||
record.Classify = classify;
|
||||
record.Type = (TransactionType)recordType;
|
||||
|
||||
result.Add(record);
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogWarning(ex, "解析AI分类结果失败,跳过分类: {Data}", data);
|
||||
}
|
||||
});
|
||||
|
||||
return result.ToArray();
|
||||
}
|
||||
}
|
||||
@@ -35,7 +35,13 @@ public class EmailParseForm95555(
|
||||
DateTime? occurredAt
|
||||
)[]> ParseEmailContentAsync(string emailContent)
|
||||
{
|
||||
var pattern = "您账户(?<card>\\d+)于.*?(?<type>收入|支出|消费|转入|转出)?.*?在?(?<reason>.+?)(?<amount>\\d+\\.\\d{1,2})元,余额(?<balance>\\d+\\.\\d{1,2})";
|
||||
var pattern =
|
||||
"您账户(?<card>\\d+)" +
|
||||
"于.*?" + // 时间等信息统统吞掉
|
||||
"(?:(?<type>收入|支出|消费|转入|转出).*?)?" + // 可选 type
|
||||
"(?:在(?<reason>.*?))?" + // 可选 reason(“财付通-微信支付-这有电快捷支付”)
|
||||
"(?<amount>\\d+\\.\\d{1,2})元,余额" +
|
||||
"(?<balance>\\d+\\.\\d{1,2})";
|
||||
|
||||
var matches = Regex.Matches(emailContent, pattern);
|
||||
|
||||
|
||||
@@ -144,6 +144,17 @@ public class EmailParseFormCCSVC(
|
||||
reason = string.Join(" ", parts.Skip(2));
|
||||
}
|
||||
|
||||
// 招商信用卡特殊,消费金额为正数,退款为负数
|
||||
if(amount > 0)
|
||||
{
|
||||
type = TransactionType.Expense;
|
||||
}
|
||||
else
|
||||
{
|
||||
type = TransactionType.Income;
|
||||
amount = Math.Abs(amount);
|
||||
}
|
||||
|
||||
result.Add((card, reason, amount, balance, type, occurredAt));
|
||||
}
|
||||
catch (Exception ex)
|
||||
|
||||
@@ -11,3 +11,4 @@ global using FreeSql;
|
||||
global using System.Linq;
|
||||
global using Service.AppSettingModel;
|
||||
global using System.Text.Json.Serialization;
|
||||
global using System.Text.Json.Nodes;
|
||||
@@ -2,7 +2,9 @@
|
||||
|
||||
public interface ISmartHandleService
|
||||
{
|
||||
Task SmartClassifyAsync(long[] transactionIds, Action<(string , string)> chunkAction);
|
||||
Task SmartClassifyAsync(long[] transactionIds, Action<(string type, string data)> chunkAction);
|
||||
|
||||
Task AnalyzeBillAsync(string userInput, Action<string> chunkAction);
|
||||
}
|
||||
|
||||
public class SmartHandleService(
|
||||
@@ -13,7 +15,7 @@ public class SmartHandleService(
|
||||
IOpenAiService openAiService
|
||||
) : ISmartHandleService
|
||||
{
|
||||
public async Task SmartClassifyAsync(long[] transactionIds, Action<(string , string)> chunkAction)
|
||||
public async Task SmartClassifyAsync(long[] transactionIds, Action<(string, string)> chunkAction)
|
||||
{
|
||||
try
|
||||
{
|
||||
@@ -199,6 +201,151 @@ public class SmartHandleService(
|
||||
}
|
||||
}
|
||||
|
||||
public async Task AnalyzeBillAsync(string userInput, Action<string> chunkAction)
|
||||
{
|
||||
try
|
||||
{
|
||||
// 第一步:使用AI生成聚合SQL查询
|
||||
var now = DateTime.Now;
|
||||
var sqlPrompt = $"""
|
||||
当前日期:{now:yyyy年M月d日}({now:yyyy-MM-dd})
|
||||
用户问题:{userInput}
|
||||
|
||||
数据库类型:SQLite
|
||||
数据库表名:TransactionRecord
|
||||
字段说明:
|
||||
- Id: bigint 主键
|
||||
- Card: nvarchar 卡号
|
||||
- Reason: nvarchar 交易原因/摘要
|
||||
- Amount: decimal 交易金额(支出为负数,收入为正数)
|
||||
- OccurredAt: datetime 交易发生时间(TEXT类型,格式:'2025-12-26 10:30:00')
|
||||
- Type: int 交易类型(0=支出, 1=收入, 2=不计入收支)
|
||||
- Classify: nvarchar 交易分类(如:交通、餐饮、购物等)
|
||||
|
||||
【核心原则】直接生成用户所需的聚合统计SQL,而不是查询原始记录后再统计
|
||||
|
||||
要求:
|
||||
1. 根据用户问题判断需要什么维度的聚合数据
|
||||
2. 使用 GROUP BY 按分类、时间等维度分组
|
||||
3. 使用聚合函数:SUM(ABS(Amount)) 计算金额总和、COUNT(*) 计数、AVG()平均、MAX()最大、MIN()最小
|
||||
4. 时间范围使用 OccurredAt 字段,"最近X个月/天"基于当前日期计算
|
||||
5. 支出用 Type = 0,收入用 Type = 1
|
||||
6. 给聚合字段起有意义的别名(如 TotalAmount, TransactionCount, AvgAmount)
|
||||
7. 使用 ORDER BY 对结果排序(通常按金额降序)
|
||||
8. 只返回SQL语句,不要解释
|
||||
|
||||
【重要】SQLite日期函数:
|
||||
- 提取年份:strftime('%Y', OccurredAt)
|
||||
- 提取月份:strftime('%m', OccurredAt)
|
||||
- 提取日期:strftime('%Y-%m-%d', OccurredAt)
|
||||
- 不要使用 YEAR()、MONTH()、DAY() 函数,SQLite不支持
|
||||
|
||||
示例1(按分类统计):
|
||||
用户:这三个月坐车花了多少钱?
|
||||
返回:SELECT Classify, COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount, AVG(ABS(Amount)) as AvgAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-10-01' AND OccurredAt < '2026-01-01' AND (Classify LIKE '%交通%' OR Reason LIKE '%打车%' OR Reason LIKE '%公交%' OR Reason LIKE '%地铁%') GROUP BY Classify ORDER BY TotalAmount DESC
|
||||
|
||||
示例2(按月统计):
|
||||
用户:最近半年每月支出情况
|
||||
返回:SELECT strftime('%Y', OccurredAt) as Year, strftime('%m', OccurredAt) as Month, COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-06-01' GROUP BY strftime('%Y', OccurredAt), strftime('%m', OccurredAt) ORDER BY Year, Month
|
||||
|
||||
示例3(总体统计):
|
||||
用户:本月花了多少钱?
|
||||
返回:SELECT COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount, AVG(ABS(Amount)) as AvgAmount, MAX(ABS(Amount)) as MaxAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-12-01' AND OccurredAt < '2026-01-01'
|
||||
|
||||
示例4(详细记录 - 仅在用户明确要求详情时使用):
|
||||
用户:单笔超过1000元的支出有哪些?
|
||||
返回:SELECT OccurredAt, Classify, Reason, ABS(Amount) as Amount FROM TransactionRecord WHERE Type = 0 AND ABS(Amount) > 1000 ORDER BY Amount DESC LIMIT 50
|
||||
|
||||
只返回SQL语句。
|
||||
""";
|
||||
|
||||
var sqlText = await openAiService.ChatAsync(sqlPrompt);
|
||||
|
||||
// 清理SQL文本
|
||||
sqlText = sqlText?.Trim() ?? "";
|
||||
sqlText = sqlText.TrimStart('`').TrimEnd('`');
|
||||
if (sqlText.StartsWith("sql", StringComparison.OrdinalIgnoreCase))
|
||||
{
|
||||
sqlText = sqlText.Substring(3).Trim();
|
||||
}
|
||||
|
||||
logger.LogInformation("AI生成的SQL: {Sql}", sqlText);
|
||||
|
||||
// 第二步:执行动态SQL查询
|
||||
List<dynamic> queryResults;
|
||||
try
|
||||
{
|
||||
queryResults = await transactionRepository.ExecuteDynamicSqlAsync(sqlText);
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "执行AI生成的SQL失败: {Sql}", sqlText);
|
||||
// 如果SQL执行失败,返回错误
|
||||
var errorData = JsonSerializer.Serialize(new { content = "<div class='error-message'>SQL执行失败,请重新描述您的问题</div>" });
|
||||
chunkAction(errorData);
|
||||
return;
|
||||
}
|
||||
|
||||
// 第三步:将查询结果序列化为JSON,直接传递给AI生成分析报告
|
||||
var dataJson = JsonSerializer.Serialize(queryResults, new JsonSerializerOptions
|
||||
{
|
||||
WriteIndented = true,
|
||||
Encoder = System.Text.Encodings.Web.JavaScriptEncoder.UnsafeRelaxedJsonEscaping
|
||||
});
|
||||
|
||||
var dataPrompt = $"""
|
||||
当前日期:{DateTime.Now:yyyy年M月d日}
|
||||
用户问题:{userInput}
|
||||
|
||||
查询结果数据(JSON格式):
|
||||
{dataJson}
|
||||
|
||||
说明:以上数据是根据用户问题查询出的聚合统计结果,请基于这些数据生成分析报告。
|
||||
|
||||
请生成一份专业的数据分析报告,严格遵守以下要求:
|
||||
|
||||
【格式要求】
|
||||
1. 使用HTML格式(移动端H5页面风格)
|
||||
2. 生成清晰的报告标题(基于用户问题)
|
||||
3. 使用表格展示统计数据(table > thead/tbody > tr > th/td)
|
||||
4. 使用合适的HTML标签:h2(标题)、h3(小节)、p(段落)、table(表格)、ul/li(列表)、strong(强调)
|
||||
5. 支出金额用 <span class='expense-value'>金额</span> 包裹
|
||||
6. 收入金额用 <span class='income-value'>金额</span> 包裹
|
||||
7. 重要结论用 <span class='highlight'>内容</span> 高亮
|
||||
|
||||
【样式限制(重要)】
|
||||
8. 不要包含 html、body、head 标签
|
||||
9. 不要使用任何 style 属性或 <style> 标签
|
||||
10. 不要设置 background、background-color、color 等样式属性
|
||||
11. 不要使用 div 包裹大段内容
|
||||
|
||||
【内容要求】
|
||||
12. 准确解读数据:将JSON数据转换为易读的表格和文字说明
|
||||
13. 提供洞察分析:根据数据给出有价值的发现和趋势分析
|
||||
14. 给出实用建议:基于数据提供合理的财务建议
|
||||
15. 语言专业、清晰、简洁
|
||||
|
||||
直接输出纯净的HTML内容,不要markdown代码块标记。
|
||||
""";
|
||||
|
||||
// 第四步:流式输出AI分析结果
|
||||
await foreach (var chunk in openAiService.ChatStreamAsync(dataPrompt))
|
||||
{
|
||||
var sseData = JsonSerializer.Serialize(new { content = chunk });
|
||||
chunkAction(sseData);
|
||||
}
|
||||
|
||||
// 发送完成标记
|
||||
chunkAction("[DONE]");
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "智能分析账单失败");
|
||||
var errorData = JsonSerializer.Serialize(new { content = $"<div class='error-message'>分析失败:{ex.Message}</div>" });
|
||||
chunkAction(errorData);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 查找匹配的右括号
|
||||
/// </summary>
|
||||
@@ -243,4 +390,3 @@ public record GroupClassifyResult
|
||||
[JsonPropertyName("type")]
|
||||
public TransactionType Type { get; set; }
|
||||
}
|
||||
|
||||
@@ -21,7 +21,7 @@
|
||||
<van-cell title="编辑分类" is-link @click="handleEditClassification" />
|
||||
<van-cell title="批量分类" is-link @click="handleBatchClassification" />
|
||||
<van-cell title="智能分类" is-link @click="handleSmartClassification" />
|
||||
<van-cell title="自然语言分类" is-link @click="handleNaturalLanguageClassification" />
|
||||
<!-- <van-cell title="自然语言分类" is-link @click="handleNaturalLanguageClassification" /> -->
|
||||
</van-cell-group>
|
||||
<div class="detail-header" style="padding-bottom: 5px;">
|
||||
<p>开发者</p>
|
||||
|
||||
@@ -6,8 +6,6 @@ using Repository;
|
||||
[Route("api/[controller]/[action]")]
|
||||
public class TransactionRecordController(
|
||||
ITransactionRecordRepository transactionRepository,
|
||||
ITransactionCategoryRepository categoryRepository,
|
||||
IOpenAiService openAiService,
|
||||
ISmartHandleService smartHandleService,
|
||||
ILogger<TransactionRecordController> logger
|
||||
) : ControllerBase
|
||||
@@ -339,151 +337,16 @@ public class TransactionRecordController(
|
||||
Response.Headers.Append("Cache-Control", "no-cache");
|
||||
Response.Headers.Append("Connection", "keep-alive");
|
||||
|
||||
try
|
||||
if (string.IsNullOrWhiteSpace(request.UserInput))
|
||||
{
|
||||
// 第一步:使用AI生成聚合SQL查询
|
||||
var now = DateTime.Now;
|
||||
var sqlPrompt = $"""
|
||||
当前日期:{now:yyyy年M月d日}({now:yyyy-MM-dd})
|
||||
用户问题:{request.UserInput}
|
||||
|
||||
数据库类型:SQLite
|
||||
数据库表名:TransactionRecord
|
||||
字段说明:
|
||||
- Id: bigint 主键
|
||||
- Card: nvarchar 卡号
|
||||
- Reason: nvarchar 交易原因/摘要
|
||||
- Amount: decimal 交易金额(支出为负数,收入为正数)
|
||||
- OccurredAt: datetime 交易发生时间(TEXT类型,格式:'2025-12-26 10:30:00')
|
||||
- Type: int 交易类型(0=支出, 1=收入, 2=不计入收支)
|
||||
- Classify: nvarchar 交易分类(如:交通、餐饮、购物等)
|
||||
|
||||
【核心原则】直接生成用户所需的聚合统计SQL,而不是查询原始记录后再统计
|
||||
|
||||
要求:
|
||||
1. 根据用户问题判断需要什么维度的聚合数据
|
||||
2. 使用 GROUP BY 按分类、时间等维度分组
|
||||
3. 使用聚合函数:SUM(ABS(Amount)) 计算金额总和、COUNT(*) 计数、AVG()平均、MAX()最大、MIN()最小
|
||||
4. 时间范围使用 OccurredAt 字段,"最近X个月/天"基于当前日期计算
|
||||
5. 支出用 Type = 0,收入用 Type = 1
|
||||
6. 给聚合字段起有意义的别名(如 TotalAmount, TransactionCount, AvgAmount)
|
||||
7. 使用 ORDER BY 对结果排序(通常按金额降序)
|
||||
8. 只返回SQL语句,不要解释
|
||||
|
||||
【重要】SQLite日期函数:
|
||||
- 提取年份:strftime('%Y', OccurredAt)
|
||||
- 提取月份:strftime('%m', OccurredAt)
|
||||
- 提取日期:strftime('%Y-%m-%d', OccurredAt)
|
||||
- 不要使用 YEAR()、MONTH()、DAY() 函数,SQLite不支持
|
||||
|
||||
示例1(按分类统计):
|
||||
用户:这三个月坐车花了多少钱?
|
||||
返回:SELECT Classify, COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount, AVG(ABS(Amount)) as AvgAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-10-01' AND OccurredAt < '2026-01-01' AND (Classify LIKE '%交通%' OR Reason LIKE '%打车%' OR Reason LIKE '%公交%' OR Reason LIKE '%地铁%') GROUP BY Classify ORDER BY TotalAmount DESC
|
||||
|
||||
示例2(按月统计):
|
||||
用户:最近半年每月支出情况
|
||||
返回:SELECT strftime('%Y', OccurredAt) as Year, strftime('%m', OccurredAt) as Month, COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-06-01' GROUP BY strftime('%Y', OccurredAt), strftime('%m', OccurredAt) ORDER BY Year, Month
|
||||
|
||||
示例3(总体统计):
|
||||
用户:本月花了多少钱?
|
||||
返回:SELECT COUNT(*) as TransactionCount, SUM(ABS(Amount)) as TotalAmount, AVG(ABS(Amount)) as AvgAmount, MAX(ABS(Amount)) as MaxAmount FROM TransactionRecord WHERE Type = 0 AND OccurredAt >= '2025-12-01' AND OccurredAt < '2026-01-01'
|
||||
|
||||
示例4(详细记录 - 仅在用户明确要求详情时使用):
|
||||
用户:单笔超过1000元的支出有哪些?
|
||||
返回:SELECT OccurredAt, Classify, Reason, ABS(Amount) as Amount FROM TransactionRecord WHERE Type = 0 AND ABS(Amount) > 1000 ORDER BY Amount DESC LIMIT 50
|
||||
|
||||
只返回SQL语句。
|
||||
""";
|
||||
|
||||
var sqlText = await openAiService.ChatAsync(sqlPrompt);
|
||||
|
||||
// 清理SQL文本
|
||||
sqlText = sqlText?.Trim() ?? "";
|
||||
sqlText = sqlText.TrimStart('`').TrimEnd('`');
|
||||
if (sqlText.StartsWith("sql", StringComparison.OrdinalIgnoreCase))
|
||||
{
|
||||
sqlText = sqlText.Substring(3).Trim();
|
||||
}
|
||||
|
||||
logger.LogInformation("AI生成的SQL: {Sql}", sqlText);
|
||||
|
||||
// 第二步:执行动态SQL查询
|
||||
List<dynamic> queryResults;
|
||||
try
|
||||
{
|
||||
queryResults = await transactionRepository.ExecuteDynamicSqlAsync(sqlText);
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "执行AI生成的SQL失败: {Sql}", sqlText);
|
||||
// 如果SQL执行失败,返回错误
|
||||
var errorData = System.Text.Json.JsonSerializer.Serialize(new { content = "<div class='error-message'>SQL执行失败,请重新描述您的问题</div>" });
|
||||
await Response.WriteAsync($"data: {errorData}\n\n");
|
||||
await Response.Body.FlushAsync();
|
||||
await WriteEventAsync("<div class='error-message'>请输入分析内容</div>");
|
||||
return;
|
||||
}
|
||||
|
||||
// 第三步:将查询结果序列化为JSON,直接传递给AI生成分析报告
|
||||
var dataJson = System.Text.Json.JsonSerializer.Serialize(queryResults, new JsonSerializerOptions
|
||||
await smartHandleService.AnalyzeBillAsync(request.UserInput, async (chunk) =>
|
||||
{
|
||||
WriteIndented = true,
|
||||
Encoder = System.Text.Encodings.Web.JavaScriptEncoder.UnsafeRelaxedJsonEscaping
|
||||
await WriteEventAsync(chunk);
|
||||
});
|
||||
|
||||
var dataPrompt = $"""
|
||||
当前日期:{DateTime.Now:yyyy年M月d日}
|
||||
用户问题:{request.UserInput}
|
||||
|
||||
查询结果数据(JSON格式):
|
||||
{dataJson}
|
||||
|
||||
说明:以上数据是根据用户问题查询出的聚合统计结果,请基于这些数据生成分析报告。
|
||||
|
||||
请生成一份专业的数据分析报告,严格遵守以下要求:
|
||||
|
||||
【格式要求】
|
||||
1. 使用HTML格式(移动端H5页面风格)
|
||||
2. 生成清晰的报告标题(基于用户问题)
|
||||
3. 使用表格展示统计数据(table > thead/tbody > tr > th/td)
|
||||
4. 使用合适的HTML标签:h2(标题)、h3(小节)、p(段落)、table(表格)、ul/li(列表)、strong(强调)
|
||||
5. 支出金额用 <span class='expense-value'>金额</span> 包裹
|
||||
6. 收入金额用 <span class='income-value'>金额</span> 包裹
|
||||
7. 重要结论用 <span class='highlight'>内容</span> 高亮
|
||||
|
||||
【样式限制(重要)】
|
||||
8. 不要包含 html、body、head 标签
|
||||
9. 不要使用任何 style 属性或 <style> 标签
|
||||
10. 不要设置 background、background-color、color 等样式属性
|
||||
11. 不要使用 div 包裹大段内容
|
||||
|
||||
【内容要求】
|
||||
12. 准确解读数据:将JSON数据转换为易读的表格和文字说明
|
||||
13. 提供洞察分析:根据数据给出有价值的发现和趋势分析
|
||||
14. 给出实用建议:基于数据提供合理的财务建议
|
||||
15. 语言专业、清晰、简洁
|
||||
|
||||
直接输出纯净的HTML内容,不要markdown代码块标记。
|
||||
""";
|
||||
|
||||
// 第四步:流式输出AI分析结果
|
||||
await foreach (var chunk in openAiService.ChatStreamAsync(dataPrompt))
|
||||
{
|
||||
var sseData = System.Text.Json.JsonSerializer.Serialize(new { content = chunk });
|
||||
await Response.WriteAsync($"data: {sseData}\n\n");
|
||||
await Response.Body.FlushAsync();
|
||||
}
|
||||
|
||||
// 发送完成标记
|
||||
await Response.WriteAsync("data: [DONE]\n\n");
|
||||
await Response.Body.FlushAsync();
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "智能分析账单失败");
|
||||
var errorData = System.Text.Json.JsonSerializer.Serialize(new { content = $"<div class='error-message'>分析失败:{ex.Message}</div>" });
|
||||
await Response.WriteAsync($"data: {errorData}\n\n");
|
||||
await Response.Body.FlushAsync();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@@ -683,147 +546,6 @@ public class TransactionRecordController(
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 自然语言分析 - 根据用户输入的自然语言查询交易记录并预设分类
|
||||
/// </summary>
|
||||
[HttpPost]
|
||||
public async Task<BaseResponse<NlpAnalysisResult>> NlpAnalysisAsync([FromBody] NlpAnalysisRequest request)
|
||||
{
|
||||
try
|
||||
{
|
||||
if (string.IsNullOrWhiteSpace(request.UserInput))
|
||||
{
|
||||
return BaseResponse<NlpAnalysisResult>.Fail("请输入查询条件");
|
||||
}
|
||||
|
||||
// 获取所有分类
|
||||
var categories = await categoryRepository.GetAllAsync();
|
||||
var categoryInfo = new StringBuilder();
|
||||
foreach (var type in new[] { 0, 1, 2 })
|
||||
{
|
||||
var typeName = GetTypeName((TransactionType)type);
|
||||
categoryInfo.AppendLine($"{typeName}: ");
|
||||
var categoriesOfType = categories.Where(c => (int)c.Type == type).ToList();
|
||||
foreach (var category in categoriesOfType)
|
||||
{
|
||||
categoryInfo.AppendLine($"- {category.Name}");
|
||||
}
|
||||
}
|
||||
|
||||
var systemPrompt = $$"""
|
||||
你是一个专业的交易记录查询助手。用户会用自然语言描述他想要查询和分类的交易记录。
|
||||
|
||||
可用的分类列表:
|
||||
{{categoryInfo}}
|
||||
|
||||
你需要分析用户的需求,提取以下信息:
|
||||
1. 查询SQL, 根据用户的描述生成完整SQL语句,用于查询交易记录。例如:SELECT * FROM TransactionRecord WHERE Reason LIKE '%关键词%' OR Classify LIKE '%关键词2%' LIMIT 500
|
||||
[重要Table Schema:]
|
||||
```
|
||||
TransactionRecord (
|
||||
Id LONG,
|
||||
Reason STRING NOT NULL,
|
||||
Amount DECIMAL,
|
||||
RefundAmount DECIMAL,
|
||||
Balance DECIMAL,
|
||||
OccurredAt DATETIME,
|
||||
EmailMessageId LONG,
|
||||
Type INT,
|
||||
Classify STRING NOT NULL,
|
||||
ImportNo STRING NOT NULL,
|
||||
ImportFrom STRING NOT NULL
|
||||
)
|
||||
```
|
||||
[重要]
|
||||
如果用户没有限制,则最多查询500条记录;如果用户指定了时间范围,请在SQL中加入时间过滤条件。
|
||||
[重要SQL限制]
|
||||
必须是SELECT * FROM TransactionRecord 开头的SQL语句。
|
||||
当前日期:{{DateTime.Now:yyyy年M月d日}}
|
||||
[重要SQLite日期函数]
|
||||
- 提取年份:strftime('%Y', OccurredAt)
|
||||
- 提取月份:strftime('%m', OccurredAt)
|
||||
- 提取日期:strftime('%Y-%m-%d', OccurredAt)
|
||||
- 不要使用 YEAR()、MONTH()、DAY() 函数,SQLite不支持
|
||||
2. 目标交易类型(0:支出, 1:收入, 2:不计入收支)
|
||||
3. 目标分类名称(必须从上面的分类列表中选择)
|
||||
|
||||
请以JSON格式输出,格式如下:
|
||||
{
|
||||
"sql": "查询SQL",
|
||||
"targetType": 交易类型数字,
|
||||
"targetClassify": "分类名称"
|
||||
}
|
||||
|
||||
只输出JSON,不要有其他文字说明。
|
||||
""";
|
||||
|
||||
var userPrompt = $"用户输入:{request.UserInput}";
|
||||
|
||||
// 调用AI分析
|
||||
var aiResponse = await openAiService.ChatAsync(systemPrompt, userPrompt);
|
||||
logger.LogInformation("NLP分析AI返回结果: {Response}", aiResponse);
|
||||
if (string.IsNullOrWhiteSpace(aiResponse))
|
||||
{
|
||||
return BaseResponse<NlpAnalysisResult>.Fail("AI分析失败,请检查AI配置");
|
||||
}
|
||||
|
||||
// 解析AI返回的JSON
|
||||
NlpAnalysisInfo? analysisInfo;
|
||||
try
|
||||
{
|
||||
analysisInfo = JsonSerializer.Deserialize<NlpAnalysisInfo>(aiResponse);
|
||||
if (analysisInfo == null)
|
||||
{
|
||||
return BaseResponse<NlpAnalysisResult>.Fail("AI返回格式错误");
|
||||
}
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "解析AI返回结果失败,返回内容: {Response}", aiResponse);
|
||||
return BaseResponse<NlpAnalysisResult>.Fail($"AI返回格式错误: {ex.Message}");
|
||||
}
|
||||
|
||||
// 根据关键词查询交易记录
|
||||
var allRecords = await transactionRepository.ExecuteRawSqlAsync(analysisInfo.Sql);
|
||||
logger.LogInformation("NLP分析查询到 {Count} 条记录,SQL: {Sql}", allRecords.Count, analysisInfo.Sql);
|
||||
|
||||
// 为每条记录预设分类
|
||||
var recordsWithClassify = allRecords.Select(r => new TransactionRecordWithClassify
|
||||
{
|
||||
Id = r.Id,
|
||||
Reason = r.Reason ?? string.Empty,
|
||||
Amount = r.Amount,
|
||||
Balance = r.Balance,
|
||||
Card = r.Card ?? string.Empty,
|
||||
OccurredAt = r.OccurredAt,
|
||||
CreateTime = r.CreateTime,
|
||||
ImportFrom = r.ImportFrom ?? string.Empty,
|
||||
RefundAmount = r.RefundAmount,
|
||||
UpsetedType = analysisInfo.TargetType,
|
||||
UpsetedClassify = analysisInfo.TargetClassify,
|
||||
TargetType = r.Type,
|
||||
TargetClassify = r.Classify ?? string.Empty
|
||||
}).ToList();
|
||||
|
||||
return new BaseResponse<NlpAnalysisResult>
|
||||
{
|
||||
Success = true,
|
||||
Data = new NlpAnalysisResult
|
||||
{
|
||||
Records = recordsWithClassify,
|
||||
TargetType = analysisInfo.TargetType,
|
||||
TargetClassify = analysisInfo.TargetClassify,
|
||||
SearchKeyword = analysisInfo.Sql
|
||||
}
|
||||
};
|
||||
}
|
||||
catch (Exception ex)
|
||||
{
|
||||
logger.LogError(ex, "NLP分析失败,用户输入: {Input}", request.UserInput);
|
||||
return BaseResponse<NlpAnalysisResult>.Fail($"NLP分析失败: {ex.Message}");
|
||||
}
|
||||
}
|
||||
|
||||
private async Task WriteEventAsync(string eventType, string data)
|
||||
{
|
||||
var message = $"event: {eventType}\ndata: {data}\n\n";
|
||||
@@ -831,22 +553,11 @@ public class TransactionRecordController(
|
||||
await Response.Body.FlushAsync();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 查找匹配的右括号
|
||||
/// </summary>
|
||||
private static int FindMatchingBrace(string str, int startPos)
|
||||
private async Task WriteEventAsync(string data)
|
||||
{
|
||||
int braceCount = 0;
|
||||
for (int i = startPos; i < str.Length; i++)
|
||||
{
|
||||
if (str[i] == '{') braceCount++;
|
||||
else if (str[i] == '}')
|
||||
{
|
||||
braceCount--;
|
||||
if (braceCount == 0) return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
var message = $"data: {data}\n\n";
|
||||
await Response.WriteAsync(message);
|
||||
await Response.Body.FlushAsync();
|
||||
}
|
||||
|
||||
private static string GetTypeName(TransactionType type)
|
||||
@@ -918,101 +629,9 @@ public record BatchUpdateByReasonDto(
|
||||
string Classify
|
||||
);
|
||||
|
||||
/// <summary>
|
||||
/// NLP分析请求DTO
|
||||
/// </summary>
|
||||
public record NlpAnalysisRequest(
|
||||
string UserInput
|
||||
);
|
||||
|
||||
/// <summary>
|
||||
/// NLP分析结果DTO
|
||||
/// </summary>
|
||||
public record NlpAnalysisResult
|
||||
{
|
||||
public List<TransactionRecordWithClassify> Records { get; set; } = new();
|
||||
public TransactionType TargetType { get; set; }
|
||||
public string TargetClassify { get; set; } = string.Empty;
|
||||
public string SearchKeyword { get; set; } = string.Empty;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 带分类信息的交易记录DTO
|
||||
/// </summary>
|
||||
public record TransactionRecordWithClassify
|
||||
{
|
||||
public long Id { get; set; }
|
||||
public string Reason { get; set; } = string.Empty;
|
||||
public decimal Amount { get; set; }
|
||||
public decimal Balance { get; set; }
|
||||
public string Card { get; set; } = string.Empty;
|
||||
public DateTime OccurredAt { get; set; }
|
||||
public DateTime CreateTime { get; set; }
|
||||
public string ImportFrom { get; set; } = string.Empty;
|
||||
public decimal RefundAmount { get; set; }
|
||||
public TransactionType UpsetedType { get; set; }
|
||||
public string UpsetedClassify { get; set; } = string.Empty;
|
||||
public TransactionType TargetType { get; set; }
|
||||
public string TargetClassify { get; set; } = string.Empty;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// AI分析信息DTO(内部使用)
|
||||
/// </summary>
|
||||
public record NlpAnalysisInfo
|
||||
{
|
||||
[JsonPropertyName("sql")]
|
||||
public string Sql { get; set; } = string.Empty;
|
||||
|
||||
[JsonPropertyName("targetType")]
|
||||
public TransactionType TargetType { get; set; }
|
||||
|
||||
[JsonPropertyName("targetClassify")]
|
||||
public string TargetClassify { get; set; } = string.Empty;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 账单分析请求DTO
|
||||
/// </summary>
|
||||
public record BillAnalysisRequest(
|
||||
string UserInput
|
||||
);
|
||||
|
||||
/// <summary>
|
||||
/// 账单查询信息DTO
|
||||
/// </summary>
|
||||
public class BillQueryInfo
|
||||
{
|
||||
[JsonPropertyName("timeRange")]
|
||||
public TimeRangeInfo? TimeRange { get; set; }
|
||||
|
||||
[JsonPropertyName("categories")]
|
||||
public List<string>? Categories { get; set; }
|
||||
|
||||
[JsonPropertyName("transactionType")]
|
||||
public TransactionType? TransactionType { get; set; }
|
||||
|
||||
[JsonPropertyName("analysisType")]
|
||||
public string? AnalysisType { get; set; }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// 时间范围信息DTO
|
||||
/// </summary>
|
||||
public class TimeRangeInfo
|
||||
{
|
||||
[JsonPropertyName("months")]
|
||||
public int Months { get; set; }
|
||||
|
||||
[JsonPropertyName("startYear")]
|
||||
public int StartYear { get; set; }
|
||||
|
||||
[JsonPropertyName("startMonth")]
|
||||
public int? StartMonth { get; set; }
|
||||
|
||||
[JsonPropertyName("endYear")]
|
||||
public int? EndYear { get; set; }
|
||||
|
||||
[JsonPropertyName("endMonth")]
|
||||
public int? EndMonth { get; set; }
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user